
Epistemic Uncertainty Estimation for Human-in-the-Loop Reinforcement
Learning

Ngorli Paintsil
Stanford University

ngorlip@stanford.edu

Natalie Greenfield
Stanford University

natgreen@stanford.edu

Abstract

Reinforcement Learning (RL) agents are increasingly
being deployed in complex, real-world scenarios, ranging
from autonomous driving systems to robotic surgery. How-
ever, the autonomous operation of these agents in high-
stakes environments can be risky, necessitating the devel-
opment of semi-autonomous systems that leverage human
supervision. Effective shared autonomy requires RL agents
to possess the capability to recognize their own limitations
and to strategically query human supervisors when they en-
counter situations characterized by high uncertainty. This
paper explores the integration of epistemic uncertainty es-
timation techniques into Human-in-the-Loop (HIL) RL sys-
tems, enabling agents to proactively seek guidance from hu-
man experts when their confidence in selecting optimal ac-
tions is low, particularly when those actions are likely to be
incorrect.

We investigate two distinct uncertainty quantification
methods: Deep Ensembles and Epistemic Neural Networks
(Epinet), evaluating their performance within a custom-
designed MiniGrid environment. This environment presents
agents with both static and dynamic hazards, requiring
strategic decision-making under conditions of partial ob-
servability. Our findings demonstrate that both approaches
significantly enhance querying accuracy and reduce the
likelihood of the agent entering a terminal state (e.g., col-
liding with a hazard) compared to a random querying base-
line. Notably, Epinet exhibits superior performance across
all evaluated metrics, demonstrating its potential for creat-
ing safer and more reliable shared autonomy systems.

This work addresses the critical challenge of enabling
RL agents to effectively request human intervention. Tra-
ditional methods for shared autonomy often rely on fixed
rules or heuristics, which can be overly conservative or
fail to capture the nuances of situations where human in-
put is truly necessary. We hypothesize that by equipping RL
agents with robust epistemic uncertainty estimation capa-
bilities, we can enable them to identify high-risk situations
and defer control to a human expert, mitigating potential

failures and improving overall system reliability.

Our research makes three primary contributions: (1)
We develop and evaluate a novel framework for integrating
epistemic uncertainty estimation into HIL RL systems. This
framework allows agents to learn when their own decision-
making might be suboptimal and to request assistance ac-
cordingly. (2) We conduct a comparative analysis of two
state-of-the-art uncertainty quantification methods—Deep
Ensembles and Epistemic Neural Networks—in the con-
text of test-time querying. This comparison highlights
the strengths and weaknesses of each approach for en-
abling effective shared autonomy. (3) We demonstrate that
uncertainty-aware querying significantly improves safety
metrics while maintaining reasonable query frequencies.
This balance between agent autonomy and expert assis-
tance is crucial for practical applications of shared auton-
omy.

The experimental results highlight the benefits of
uncertainty-aware querying over random querying, with
Epinet showing particularly strong performance. Epinet
achieved a querying accuracy of 95.67%, substantially out-
performing Deep Ensembles (85.76%) and a random base-
line (69.13%). Furthermore, Epinet demonstrated a 4.12%
terminal state avoidance rate, compared to 3.15% for Deep
Ensembles and 0.85% for the random baseline. This indi-
cates that Epinet is more effective at identifying situations
where the agent is likely to make a mistake and should there-
fore consult the oracle.

This research has significant implications for the devel-
opment of safer and more reliable autonomous systems.
By enabling agents to strategically request human input
based on their own uncertainty, we can create systems that
are more robust to unexpected situations and less prone to
catastrophic failures. The findings of this study suggest that
Epistemic Neural Networks hold particular promise for en-
abling effective shared autonomy in a wide range of appli-
cations.
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1. Introduction

Reinforcement Learning (RL) is growing in popularity
and success in various fields such as game playing and
robotics. However, deploying fully autonomous RL agents
in critical applications, such as healthcare, autonomous
driving, or aircraft autopilot, poses significant challenges
due to the potential for catastrophic failures. In such high-
risk or difficult-to-learn scenarios, a shared autonomy ap-
proach, where a human or expert supervisor can intervene,
is often preferred over complete RL autonomy.

The fundamental challenge in shared autonomy lies in
determining when an agent should give control to a human
operator. Traditional approaches often rely on fixed rules
or heuristics, which can be overly conservative or fail to
capture the nuanced situations where human intervention
is truly necessary [1]. For effective shared autonomy, an
RL agent must possess the capability to identify situations
where its own decision-making might be suboptimal or in-
correct and it should request human intervention.

The ability to accurately and efficiently query is criti-
cal for enhancing safety, improving task performance, and
creating human-robot trust in autonomous systems. While
prior research has explored the use of epistemic uncertainty
during the training phase to improve learning performance
[2], there remains a significant gap in methods that specifi-
cally enable RL agents to request human input solely at test
time based on model uncertainty.

This paper addresses this gap by focusing on the devel-
opment of a system that can accurately and efficiently learn
to query an expert when the agent is uncertain and would
have otherwise chosen an incorrect action. We hypothesize
that by equipping RL agents with robust epistemic uncer-
tainty estimation capabilities, we can enable them to iden-
tify high-risk situations and giving control to a human ex-
pert, mitigating potential failures and improving overall sys-
tem reliability.

Our work has three main contributions: (1) We develop
and evaluate a framework for integrating epistemic uncer-
tainty estimation into Human-in-the-Loop RL systems, (2)
We compare two uncertainty quantification methods—Deep
Ensembles and Epistemic Neural Networks—in the con-
text of test-time querying, and (3) We demonstrate that
uncertainty-aware querying significantly improves safety
metrics while maintaining reasonable query frequencies.

1.1. Problem Statement

Formally, the research problem this paper addresses is:
Can a reinforcement learning agent, given access to an ex-
pert human (modeled as a software oracle), learn to estimate
its own epistemic uncertainty and accurately query the ora-
cle in situations where its uncertain actions are likely to be
incorrect?

This problem encompasses several key challenges: (1)
accurately estimating epistemic uncertainty in partially ob-
servable environments, (2) learning appropriate thresholds
for querying decisions, and (3) balancing agent autonomy
with safety through human intervention.

2. Related Work
2.1. Human-in-the-Loop Reinforcement Learning

Human-in-the-Loop (HIL) reinforcement learning has
emerged as a promising paradigm for deploying RL agents
in safety-critical domains. Early work [3] introduced the
concept of learning from human feedback, where humans
provide evaluative signals to guide agent learning. Subse-
quent approaches expanded on this idea by incorporating
human demonstrations [4] and preferences [5] to shape the
agent’s policy.

Several recent studies have explored uncertainty-aware
querying in RL contexts. Da Silva et al. [6] proposed
uncertainty-aware action advising, where agents proactively
seek advice from humans or other agents based on uncer-
tainty estimates. Though this method requires human tra-
jectories during training. Singi et al. [7] extended this idea
to robotic manipulation by developing a decision-making
framework for human-in-the-loop agents using test-time un-
certainty estimation. Their approach, however, relies solely
on Bellman-based methods for quantifying uncertainty and
does not leverage more expressive techniques such as deep
ensembles or Epinet.

In contrast, our work focuses specifically on test-time
uncertainty estimation and querying and leveraging ad-
vanced epistemic models to improve agent performance
through selective, on-demand expert input.

2.2. Uncertainty Estimation in Deep Learning

Uncertainty quantification in deep learning has received
significant attention in recent years, with methods broadly
categorized into Bayesian and non-Bayesian approaches.
Bayesian methods, such as Monte Carlo Dropout [8] and
Variational Inference [9], provide principled frameworks
for uncertainty estimation but often come with computa-
tional overhead.

Deep Ensembles [10] have emerged as a practical al-
ternative, achieving strong performance by training multi-
ple models with different initializations and using their dis-
agreement as a proxy for uncertainty. This approach has
been successfully applied across various domains, includ-
ing computer vision and natural language processing.

More recently, Osband et al. [11] introduce the Epinet
in their paper Epistemic Neural Networks (Epinet). The
Epinet augments standard neural networks with stochastic
indices that modulate the network’s output, enabling uncer-
tainty estimation with a single model rather than requiring
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multiple independent models.

2.3. Uncertainty-Aware RL for Human Assistance

The intersection of uncertainty estimation and reinforce-
ment learning has been explored primarily in the context
of exploration and safe learning. Uncertainty-guided ex-
ploration methods [12] use epistemic uncertainty to drive
exploration in novel states, while safe RL approaches [13]
incorporate uncertainty to avoid potentially dangerous ac-
tions.

Recent work has begun to explore uncertainty estimation
for human assistance in RL. Reddy et al. [14] developed
methods for learning when to ask for help in interactive set-
tings, while Bobu et al. [15] explored shared autonomy in
robotic manipulation tasks. However, these approaches of-
ten rely on domain-specific heuristics rather than principled
uncertainty estimation methods.

Our work builds upon these foundations by systemati-
cally comparing different uncertainty estimation methods in
the specific context of test-time querying for shared auton-
omy applications.

3. Methods
3.1. MiniGrid Environment

To train and evaluate the agent, we designed a cus-
tom MiniGrid environment that creates scenarios requiring
strategic decision-making under uncertainty. This environ-
ment features both static and dynamic hazards that chal-
lenge the agent’s ability to navigate safely while progress-
ing toward a goal.

3.1.1 Environment Design

The environment is a compact 7 × 7 grid world where
the agent must navigate toward a fixed goal location while
avoiding obstacles. Within the central 3 × 3 region of the
grid, two lava tiles are randomly placed at the beginning
of each episode. These tiles represent static hazards that
immediately terminate the episode if the agent steps onto
them. The random placement prevents the agent from mem-
orizing safe paths and forces adaptation to different config-
urations.

In addition to the lava tiles, the environment includes a
single moving ball representing a dynamic hazard. The ball
is randomly placed in the grid at episode initialization and
moves with a random initial direction. When the ball col-
lides with a lava square or wall, it changes direction ran-
domly, creating unpredictable movement patterns that in-
crease the complexity of navigation decisions.

The agent operates under partial observability, with a
5×5 field of view centered on its current position. This con-
straint forces the agent to make decisions based on incom-

plete information, creating a highly stochastic environment
with partial observability where querying an oracle can im-
prove agent performance and where uncertainty estimation
becomes crucial for safe navigation.

(a) View 1 (b) View 2

Figure 1: Minigrid environments shown side-by-side.

3.1.2 Formal Problem Definition

We formalize our MiniGrid-based environment as a Par-
tially Observable Markov Decision Process (POMDP), de-
fined by the tuple (S,A, T,R,Ω, O, γ):

• State space S includes the agent’s position and orien-
tation, the positions of two randomly placed static lava
tiles within the central 3 × 3 grid region, the position
and direction of a dynamically moving hazard (a ball),
and a fixed goal location.

• Action space A = {left,right,forward} gov-
erns agent movement, where the agent can turn left,
turn right, or move forward at any timestep.

• Transition function T is deterministic for the agent,
while the ball moves stochastically, bouncing with a
random new direction upon hitting walls or hazards.

• Observations Ω consist of a 5 × 5 egocentric field of
view centered on the agent, inducing partial observ-
ability. The observation function O is deterministic but
lossy due to limited perception.

• Discount factor γ = 0.99

This setting emphasizes planning under uncertainty and
adaptation to stochastic hazards.

3.1.3 Reward Structure

The reward function employs potential-based reward shap-
ing to encourage progress toward the goal while preserving
the optimal policy structure. The shaped reward at each step
is defined as:
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Reward = r +Φ(s)− γΦ(s′) (1)

where γ = 0.99 is the discount factor,

r =


−1 if the episode is terminated by hazard
1 if agent reaches the goal
0 otherwise

(2)

and Φ(s) represents the Manhattan distance from state s
to the goal location.

Each episode is capped at 100 steps, after which the
episode terminates if the goal is not reached, providing a
-1 reward for timeout.

3.2. Base Model

For each uncertainty estimator used in this research, a
consistent base model was employed to ensure fair compari-
son across approaches. The foundation model is a Proximal
Policy Optimization (PPO) agent with a Gated Recurrent
Unit (GRU) architecture, specifically designed to handle the
partial observability inherent in the MiniGrid environment.
The PPO-GRU agent utilizes a recurrent actor-critic archi-
tecture optimized for sequential decision-making under par-
tial observability. The observation space is first processed
by a Convolutional Neural Network (CNN) encoder con-
sisting of two convolutional layers with ReLU activations,
designed to extract relevant visual features from the obser-
vation window. The CNN architecture uses 32 and 64 fil-
ters respectively, both with 3×3 kernels and padding=1 to
preserve spatial dimensions. An adaptive average pooling
layer reduces the spatial dimensions to 4×4, resulting in a
fixed-size feature representation of 64×4×4 = 1024 dimen-
sions regardless of input size variations. These extracted
CNN features are then fed into a multi-layer GRU network
with 512 hidden units across 2 layers, enabling the agent
to capture and leverage temporal dependencies within the
sequence of partial observations. The GRU’s recurrent na-
ture allows the agent to maintain an internal state that ac-
cumulates information over time, effectively compensating
for the partial observability constraint in the MiniGrid envi-
ronment.

The output of the GRU is processed by separate policy
(actor) and value (critic) heads, each implemented as two-
layer fully connected networks. The actor head consists
of a linear layer from the 512-dimensional GRU output to
256 hidden units with ReLU activation, followed by a final
linear layer producing logits for the three possible actions.
Similarly, the critic head uses the same 512→256→1 ar-
chitecture with ReLU activation to estimate the state value
function for advantage computation in the PPO algorithm.

The PPO-GRU agent was trained for a total of 300,000
timesteps with a learning rate scheduler to allow sufficient

exploration. To improve policy robustness to oracle actions
at test time we implemneted regularization at training time.
Firstly we reset the GRU to the initial hidden state 5% of
step and secondly we changed the starting direction of the
agent in 10% of episodes. With regularization our baseline
achieved a success rate of 74.4%. Critically, during training,
the PPO-GRU agent did not have access to the oracle, en-
suring it learned to navigate the environment independently
before uncertainty estimation methods were integrated.

3.3. Human-in-the-Loop Pipeline

The Human-in-the-Loop pipeline integrates uncertainty
estimation with action selection to enable strategic querying
of expert knowledge. At each timestep during evaluation,
the current state observation is fed into both the baseline
PPO agent and the chosen uncertainty estimator.

The pipeline operates through the following decision
process: 1) The current state st is processed by the trained
PPO agent to generate action probabilities π(a|st) 2) Si-
multaneously, the uncertainty estimator computes an uncer-
tainty score ut for the current state 3) If the uncertainty
value exceeds a tuned threshold τ (specific to each uncer-
tainty method), the agent queries the oracle for the optimal
action a∗t 4) Otherwise, the agent executes its own action
at ∼ π(·|st)

Train PPO GRU with
No Access to Expert Observation

Uncertainty
Estimator

Action

Uncertainty
> Threshold

Uncertainty
≤ Threshold

Query Expert

PPO Policy

Figure 2: Human-in-the-Loop Pipeline

The oracle is implemented as an A* pathfinding algo-
rithm with complete environment visibility, serving as a
proxy for human expert knowledge. This oracle can com-
pute optimal actions by considering all static and dynamic
hazards, the goal location, and the current agent position.

Threshold values τ were determined through grid search
optimization on a validation set, balancing query frequency
with performance improvements. The goal was to maintain
query rates between 0.2-0.4 queries per episode to ensure
the agent remains largely autonomous while benefiting from
strategic expert intervention.

3.4. Deep Ensemble

The first uncertainty estimation method employed was
Deep Ensembles, based on earlier work done for estimating
epistemic uncertainty at training time [6]. This approach
leverages the disagreement among multiple independently
trained models as a measure for epistemic uncertainty.
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The ensemble consists of 5 independent PPO-GRU
agents, each with identical architecture but different random
weight initializations. Each ensemble member was trained
independently on the same MiniGrid environment using the
training procedure described in Section 3.2, ensuring diver-
sity in the learned policies while maintaining consistent per-
formance levels.

During training, each ensemble member experiences
different sequences of random environment configurations
leading to diverse learned representations and decision
boundaries. This diversity is crucial for effective uncer-
tainty estimation, as disagreement among ensemble mem-
bers indicates regions of the state space where the optimal
action is unclear, indicating uncertainty.

At test time, uncertainty estimation proceeds as follows:
1) The current state st is fed to all 5 ensemble members. 2)
Each member i produces action logits zi(st) ∈ R3. 3) The
ensemble uncertainty is computed as the variance across en-
semble predictions:

ut =
1

|A|

|A|∑
a=1

Var(z(a)1:5 (st)) (3)

where z
(a)
1:5 (st) represents the logits for action a across all

ensemble members.
High variance indicates disagreement among ensemble

members, suggesting the agent encounters a state where the
optimal action is uncertain. This uncertainty signal is then
compared against the threshold τensemble = 0.49 to deter-
mine whether to query the oracle. The Deep Ensemble ap-
proach served as a robust but simple baseline for uncertainty
estimation.

3.5. Epinet

The second uncertainty estimation method uses the
Epinet introduced by Osband et al. [11] in Epistemic Neu-
ral Networks. Epinet provides ensemble-like epistemic
uncertainty without training multiple independent models,
thereby offering a far more computationally efficient alter-
native to Deep Ensembles. The key innovation is the in-
troduction of a latent stochastic index z that modulates the
network’s output, effectively simulating ensemble diversity
within a single model.

We attach an Epinet value head to the frozen CNN-GRU
policy, using the GRU hidden state ht ∈ Rd as input. The
Epinet head consists of: 1) A small shared MLP feature ex-
tractor with two 64-unit layers that processes ht. output. 2)
A continuous index z ∼ N (0, I16) of dimension dz = 16
sampled once per forward pass. 3) A trainable output head
and a frozen prior network, both conditioned on (ht, z), pro-
duce scalar outputs that are summed to yield the final value
prediction:

v = ftrain(ht, z) + prior scale · fprior(ht, z)

Figure 3: Epinet Architecture

We fix prior scale = 1.0 and stop gradients through
the prior branch to preserve the Bayesian inductive bias of
the original formulation.

To train the Epinet, we run the frozen PPO-GRU policy
for 50,000 environment steps, extracting GRU features ϕt

and the action entropy at each step. Action entropy mea-
sures the uncertainty in the agent’s policy’s action distribu-
tion:

H(πt) = −
∑
a

πt(a) log πt(a)

defined as the entropy of its action distribution. It serves
as a proxy for the agent’s internal confidence: high entropy
indicates indecision, while low entropy suggests confident
action selection.

This serves as a proxy for the agent’s internal confidence:
high entropy indicates indecision, while low entropy sug-
gests confident selection. These entropy values are used
as regression targets, enabling the Epinet to learn to esti-
mate policy uncertainty from internal features. We mini-
mize mean squared error using the Adam optimizer (learn-
ing rate 10−3, batch size 256) for 100 epochs. The model is
implemented in JAX with Haiku and Optax, using the orig-
inal Epinet training library.

At test time, uncertainty estimation is performed by sam-
pling multiple indices z1, z2, ..., zM where M = 10 and
computing action logits for each sampled index πi(st) =
softmax(f(st, zi)). Epistemic uncertainty is quantified as
the sample standard deviation across these predictions:

ut =

√
Var(

{
fθ(ht, zi)

}M

i=1
)

A high value of ut indicates internal disagreement in the
value head, and thus low epistemic confidence.

The threshold for Epinet querying was set to τEpinet =
0.23 based on validation set optimization. Epinet’s more
fine-grained uncertainty estimates typically result in a dif-
ferent uncertainty distribution compared to Deep Ensem-
bles, resulted in the need for separate threshold tuning.
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4. Experiments and Results
4.1. Experimental Setup

Human-in-the-loop pipeline eval was conducted using
the custom MiniGrid environment described in Section 3.1.
Each uncertainty estimation method was evaluated across
1000 episodes to compute final performance statistics.

4.2. Metrics

We selected three key metrics to comprehensively ana-
lyze our uncertainty estimators:

Querying Accuracy: The percentage of oracle queries
where the agent’s intended action differed from the ora-
cle’s recommended action. This metric captures the quality
of uncertainty estimation by measuring whether the agent
queries the oracle precisely when it would have made a
suboptimal decision. High querying accuracy indicates that
the uncertainty estimator successfully identifies situations
where the agent’s knowledge is insufficient.

Terminal State Avoidance: The percentage of episodes
where the agent correctly chose to query the oracle in-
stead of taking an action that would have led to episode
termination (stepping on lava or collision with the mov-
ing ball). This safety-critical metric directly measures the
agent’s ability to avoid failures through querying.

Success Rate: The overall success rate in reaching the
goal within the 100-step episode limit. This metric evalu-
ates whether the uncertainty-aware querying system main-
tains or improves task performance compared to the base-
line agent.

Query Frequency: The average number of oracle
queries per episode, serving as a sanity check for thresh-
old tuning. If this number is too high the agent becomes
overly dependent on the oracle; if too low the agent rarely
benefits from expert knowledge.

4.3. Baseline Comparison

To establish the value of principled uncertainty es-
timation, we implemented a random querying baseline
that queries the oracle with the same frequency as our
uncertainty-based methods but without considering uncer-
tainty. This baseline uses the same threshold optimization
procedure but applies the threshold to uniformly random
values rather than uncertainty estimates.

4.4. Results

The experimental results demonstrate clear benefits of
uncertainty-aware querying over random querying, with
Epinet showing superior performance across all metrics.

Querying Accuracy: Epinet achieved exceptional
querying accuracy at 95.67%, substantially outperforming
both the Deep Ensemble (85.76%) and the random base-
line (69.13%). This 10-point improvement over Deep En-

0 0.05 0.1 0.15 0.21 0.26 0.31 0.36 0.41 0.46
0

2,000

4,000

6,000

Measured Uncertainty

C
ou

nt

Deep Ensemble Epistemic Uncertainty

Figure 4: Histogram of sample values across measured un-
certainty intervals.

sembles and 26-point improvement over random querying
demonstrates Epinet’s superior ability to identify situations
where the agent lacks sufficient knowledge to make optimal
decisions.

Terminal State Avoidance: Both uncertainty estimation
methods showed significant improvements in safety met-
rics. Deep Ensemble achieved 3.15% terminal state avoid-
ance compared to 0.85% for random querying, while Epinet
reached 4.12%. Though these absolute percentages appear
low, they represent substantial relative improvements (3.7×
and 4.8× respectively) in avoiding catastrophic failures.

Success Rate: Epinet demonstrated the highest task per-
formance with a 75.70% success rate, compared to 72.40%
for Deep Ensemble and 72.5% for random querying. The
improvement suggests that uncertainty-aware querying not
only enhances safety but can also improve overall task com-
pletion rates.

Query Frequency: All methods maintained reasonable
query frequencies around 0.3 queries per episode, confirm-
ing that threshold optimization successfully balanced agent
autonomy with expert assistance. The similar query rates
across methods validate our experimental design and enable
fair comparison of uncertainty estimation quality.

Table 1: Performance comparison of uncertainty estimation
methods

Metric Random Deep Ensemble Epinet
Querying Accuracy 69.13% 85.76% 95.67%
Terminal State Avoidance 0.85% 3.15% 4.12%
Success Rate 72.5% 72.40% 75.70%
Avg Queries per Episode 0.27 0.29 0.32
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4.5. Uncertainty Distribution Analysis

The uncertainty distributions of the Deep Ensemble and
Epinet methods exhibit distinct shapes and ranges. The
Deep Ensemble displays a approximately normal distribu-
tion with uncertainty values spanning 0.0 to 0.51, peaking
around 0.26-0.31. Specifically, the peak bin (0.257-0.308)
contains 6,937 samples, representing about 25% of all sam-
ples. This normal distribution without strong distinction
may limit the Deep Ensemble’s ability to effectively differ-
entiate between moderately and highly uncertain samples.

In contrast, Epinet presents a heavily right-skewed distri-
bution with a significantly wider dynamic range, extending
from 0.004 to 1.87. This distribution is dominated by low-
uncertainty samples, with 24,853 samples (approximately
89% of the total) concentrated in the lowest bin (0.004-
0.190). The extended tail, however, provides a clear iden-
tification genuinely uncertain samples, as only 540 samples
exhibit uncertainty values above 0.75.

These characteristics suggest that Epinet’s architecture
more effectively captures the underlying uncertainty struc-
ture inherent in the problem domain. The bimodal nature of
epistemic uncertainty, where most samples are either confi-
dently predictable or clearly uncertain, is better reflected in
Epinet’s distribution than in the Deep Ensemble’s more uni-
form spread. The findings indicate that effective uncertainty
quantification methods should prioritize creating distinct
separation between uncertainty regimes rather than generat-
ing smooth, continuous distributions, which can cause dif-
ficult separation between genuinely uncertain samples with
those that are merely moderately difficult to predict.

Table 2: Success rates across different agent configurations

Method Success Rate (%)
Base Model with No Regularization 81.1
Base Model with No Regularization + Epinet + Oracle 63.9
Base Model 74.4
Base Model + Epinet + Oracle 75.7

4.6. Success Rate Investigation

During the development of our base model, we observed
a significant degradation in performance when incorporat-
ing oracle querying without appropriate regularization. As
shown in Table 2, the unregularized base model achieved
an 81.1% success rate, whereas the same model with ora-
cle queries dropped sharply to 63.9%. Qualitative analy-
sis of the resulting trajectories revealed that the agent fre-
quently began spinning in place after control was returned
from the oracle. This behavior, which deviated greatly from
the learned policy, likely stemmed from two factors: (1)
the oracle, implemented using A* search, operates with full
observability and thus introduces state transitions unfamil-
iar to the policy, which was trained in a partially observ-
able setting; and (2) oracle actions may disrupt the internal
GRU hidden state, leading to unstable behavior. Manually
resetting the GRU hidden state after oracle handover quali-
tatively reduced spinning.

To address these issues, we introduced a regularization
strategy that resets both the GRU hidden state and the
agent’s initial direction upon resuming control. Although
this regularization slightly degraded the base model’s per-
formance (from 81.1% to 74.4%), it substantially improved
the performance of the oracle-augmented model, which
achieved a 75.7% success rate—surpassing the unregular-
ized oracle variant. These results led us to use the regular-
ized model as our base model for all other experiments and
suggests that the observed degradation was indeed due to a
combination of out-of-distribution state transitions and hid-
den state corruption. Despite these improvements, however,
none of the oracle-augmented models consistently outper-
formed the original base model.

5. Discussion

5.1. Method Comparison

The superior performance of Epinet across all metrics
can be attributed to several factors. First, Epinet’s shared
feature representation allows for more nuanced uncertainty
estimation, as different epistemic heads can specialize while
leveraging common low-level features. This architectural
advantage enables more precise identification of genuinely
uncertain states.

Second, the stochastic index sampling mechanism in
Epinet provides a more direct estimate of epistemic uncer-
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tainty compared to the ensemble disagreement used in Deep
Ensembles. The 16 epistemic heads in Epinet can capture
finer-grained uncertainty patterns than the 5 independent
models in the Deep Ensemble approach.

Third, Epinet’s training procedure explicitly encourages
diversity among epistemic heads through the regularization
term, potentially leading to better calibrated uncertainty es-
timates compared to the implicit diversity arising from dif-
ferent initialization in Deep Ensembles.

5.2. Safety Implications

The improvements in terminal state avoidance, while
appearing modest in absolute terms, represent significant
safety enhancements. In safety-critical applications, even
small reductions in failure rates can have substantial impact
on system reliability and user trust.

The ability of both uncertainty estimation methods to
identify potentially catastrophic situations (terminal states)
before they occur demonstrates the practical value of
uncertainty-aware querying for shared autonomy applica-
tions. This capability is particularly valuable in domains
where recovery from failures is difficult or impossible.

5.3. Computational Considerations

While Epinet demonstrates superior performance, com-
putational efficiency considerations are important for prac-
tical deployment. Epinet requires only a single model with
multiple head sampling, making it more memory-efficient
than Deep Ensembles. However, the need to sample mul-
tiple indices and compute predictions for each adds some
computational overhead compared to standard single-model
inference.

Deep Ensembles, while requiring multiple models, bene-
fit from embarrassingly parallel computation across ensem-
ble members. In scenarios with abundant computational
resources, this parallelizability might offset the increased
memory requirements.

5.4. Limitations

Several limitations should be acknowledged in our cur-
rent approach. First, the MiniGrid environment, while de-
signed to test uncertainty estimation, represents a simplified
scenario compared to real-world applications. The discrete
action space, deterministic dynamics (except for ball move-
ment), and limited state complexity may not capture the full
challenges of uncertainty estimation in more complex do-
mains.

Second, our oracle implementation using A* pathfinding
assumes perfect knowledge and optimal decision-making.
Real human experts may make suboptimal decisions or have
their own uncertainties, potentially affecting the validity of
our querying accuracy metric.

Third, the threshold optimization procedure, while sys-
tematic, requires validation data and may not generalize
across different environments or task distributions. Adap-
tive threshold selection methods could improve robustness
and transferability.

6. Conclusion and Future Work

This work demonstrates the effectiveness of epis-
temic uncertainty estimation for enabling strategic human-
machine collaboration in reinforcement learning systems.
Our findings show that principled uncertainty estimation,
particularly through Epinet, can significantly improve an
agent’s ability to identify situations requiring human inter-
vention while maintaining autonomous operation in well-
understood scenarios.

The key contributions of this work include: (1) a system-
atic comparison of uncertainty estimation methods for test-
time querying in RL, (2) demonstration that uncertainty-
aware querying improves both safety and performance met-
rics, and (3) evidence that Epinet provides superior uncer-
tainty estimation capabilities compared to Deep Ensembles
in this context.

Future work should explore several promising directions.
First, evaluation in more complex and realistic environ-
ments, including continuous control tasks and real-world
robotic applications, would strengthen the generalizability
of our findings. Second, investigation of adaptive thresh-
old selection methods could eliminate the need for manual
threshold tuning and improve transferability across different
tasks.

Third, incorporating human factors considerations, such
as cognitive load and trust dynamics, could lead to more
effective human-machine collaboration strategies. Finally,
exploring hierarchical uncertainty estimation methods that
can operate at different temporal scales could enable more
sophisticated querying strategies for long-horizon tasks.

The integration of uncertainty-aware querying into prac-
tical shared autonomy systems represents a promising path
toward safer and more reliable AI deployment in high-
stakes domains. Our work provides a foundation for future
research in this critical area.
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